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TECHNICAL PAPER

THE ESTIMATION ERROR COVARIANCE MATRIX
FOR THE IDEAL STATE RECONSTRUCTOR
WITH MEASUREMENT NOISE

I. INTRODUCTION

Recently, Polites developed a new state reconstructor for deterministic digital control systems
which he called the Ideal State Reconstructor (ISR) {1-5]. It was so named because, for a linear time
invariant plant with noise-free measurements, measurable inputs, and known parameters. the ISR exactly
reconstructs the state of the plant and does so without requiring any knowledge of the plant’s initial state.
In addition, the ISR adds no new states or eigenvalues to the system. Nor does it affect the plant equation
for the system in anyway: it affects the measurement equation only. However, systems in the real world
normally have some measurement noise. nonmeasurable inputs, and parameter uncertainty. Hence. the
effect of these things on the ISR needs to be determined. This paper addresses the first.

The outline of the paper is as follows. First, a brief review of the ISR is given, in Section I1.
Then. an analysis of the ISR with measurement noise is presented. in Section IlI. Next, an example 1s
given, in Section 1V. which illustrates the effect of measurement noise on the ISR. Finally, some con-
clusions and recommendations for further study are presented. in Section V.

II. A REVIEW OF THE IDEAL STATE RECONSTRUCTOR

Consider the ubiquitous continuous-time plant driven by a zero-order-hold with a sampled output,
as shown in Figure 1. The state vector x(t) € R": the control input vector u(kT) € R"; the standard output
or measurement vector y (kT) € R™; the system matrix F € R™™; the control matrix G € R™": the standard
output matrix C, € R™M [t is well known that this system can be modeled at the sampling instants by the
discrete state equations [6]

x[(k+ DTl = Ax(kT) + Bu(kT) (1)
y(kT) = Cx(KT) 2)

where

o =L [(s1-F)'] € R™ (3)



(1) Choose N so that

N=np . (6)

(2) Form the matrix « where

Cp &)
7
a = | Cp (b(— _T;) € R™Nmxn (7)
N

Crdl=N-p Ly |
and check to be certain it has full rank (i.e.. rank n). If so, proceed by letting
oF = ((XTOI)'I (XT € Rn\(Np) ) (8)

(3) Choose g so that

g=n—-m . (9)

(4) Now choose a matrix D_ € RY™" so that

Cs
Cpr = fomoeeeee € RIM twxn (10)

has full rank (i.e., rank n).

(5) Let
Cl = (C"Cpy! ¢ € R (an

and



H = D_ a* € RN (12)
(6) Partition H as follows
H = [Hy H, Hyoyd

to reveal H;, j = 0.1.....N-1.

(7) Form the matrix 3 where

[ 0
c [J smdn] G
Y]

—~(TiN)

B — Cr [.!: (b()\)d}\] G € RINpIxr

—N-1)(T/N)

< [{ dvdn] G

—_—

and let
E_ = HP € R
The ISR is now completely defined for exact state reconstruction.

A special form of the ISR is obtained when C, is a null matrix (i.e., m = 0) andg =n-m = n.
Then. D_ € R™" and, by virtue of equations (10) and (11),

CT = D_€ RM*" (13)
and

C'?: — D,_l € R™" (14)
respectively.



. ANALYSIS OF THE IDEAL STATE RECONSTRUCTOR
WITH MEASUREMENT NOISE

Now consider the system in Figure 3, which is the system in Figure 2 with measurement noise
added. The symbol (™) denotes a quantity corrupted by noise. The measurement noise sources are vg(t)
€ R™ and v;(t) € R”. They are assumed to have the following statistical properties after sampling:

Y g prop pling

~
E [_l-_’g.(l\T)] = Q € R™
E [Bs“\']‘) ES](JT)J — RSS 6“\_]) € Rmym
T
AR — = 0 p
E [v:(k N )] 0€eRr
Ly wr (15)
E vk '%) Vi (] %)] = Ry 8(k-)) € R | #
E lﬁ‘(kr] L’}:T (KT - | %)] = RSI-' 6(‘,) € R™M™P

E [v.(KT) v (kT - ] %)1 = Ris 8(j) = Rg.T 8(j) € R J

tor all integer values of k and j. It is straightforward to show that the output of the ISR in Figure 3 can be
expressed as

FYKRT) = yr'(kTy 4 o AR }
where y4(KT) is the output for the noise-free case and

( vi(KT)

etk T
Vi) = T ) ) € RN

vi:[KT - (N-{ T 1
vy ( )NJ
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Assume the parameter matrices in the ISR are chosen by the procedure described in Section II and exact
state reconstruction is achieved in the noise-free case. Then y'(kT) is given by equation (5). Obviously,
with measurement noise, ¥'(kT) is an estimate of x(kT). Hence, the state estimation error for the ISR can

be written as

~ Vs(kT)
AUKT) = Fr'KT) - x(KT) = CF frmmiml ber (16)

With equation (16) and the statistical properties of the measurement noise specified in equations (15), the
statistical properties of X.(kT) are found to be

E [L.(kD) = 0
and
COV [RAKT). XD} = E [R(kT) X.TGD)] - E [X(KT)] E [&.TGT)] = Ree 8(k-j) |

for all integer values of k and j, where

—\
Rss ! [Rg0 0] HT
* \ e :V— o
Ree = Cr Ry E FRFF 0 (CHT
H|l O | 'H HT
0o | 0 Rer
or Lo d L vl > (17)
rRss E R Hy'
Ree = Cy |-=rmmmmmmmmee oo ()T
! © N !
Ho Rgy: E Z (H; Rege HiT)
B A |
—




If the performance index J for the ISR is chosen to be the trace of COV[gc(kT), gc(kT)], then
J = trace fCOvV [g.(kT). gc(kT)“ = trace (R.) . (18)

which is invariant with time.

Consider the special form of the ISR where C, is a null matrix (i.e., m = 0)andq = n-m = n. In
this case, there are no standard measurements and, hence, no associated measurement noise. Therefore,
Rgs and Rgy are null matrices. With this and equations (12), (14), and (17),

Rpri 0

Ree = a (a®)T (19)
O RFF

By virtue of equations (7), (8), (15), (18), and (19), once the plant is fixed and the measurement noise is
specified, the performance index J is only a function of N, the number of measurements used in estimat-
ing the state every T seconds. The sensitivity of J to N will be illustrated by means of an example, pre-
sented in Section [V.

IV. AN EXAMPLE

Consider the system in Figure 4. It is a double integrator plant with measurement noise and the
special form of the ISR described in Sections IT and II1. It is assumed that the statistical properties of the
measurement noise after sampling are given by equations (15) with R = 1, Rgg and Rgg are null
matrices. Furthermore, it is assumed that the time interval between state estimates is T = | sec. The
number of measurements N, used in estimating the state at a given time, is a parameter which will be

varied to see the affect of N on the estimator performance index J.

Manipulating the plant in Figure 4 into the format of Figure 3 yields

F = , (20)



- 101ONIISUOIY IelS [edp] Y JO .
waoj [e1oads ay) pur ISIOU JUIWAMSEIW YLm yuepd Jojeidaul S|qno( “ N5l

HOLONYHLSNOO3YH J1V1S Tv3ad!

W |

HY Amx

=(n

HOZ|«

10



and

G =1[1 0 . (21)

where C, is a null matrix. It follows from the definitions of F. G, Cy, and C, given in Section Il thatn =

2.r = p = 1,and m = 0. From equations (3) and (20).
It
by = (22)
0 1

Proceed now with the design of the ISR using the procedure outlined in Section I1. From equation
(6), the requirement on N is that N = 2. From equations (7), (21), and (22),

1 0 7]

I —I/N

oa = |1 -2/N
I ~(N-1)N]

when T = [ sec. For N = 2, « is seen to have full rank [i.e.. rank () = 2] as required. Since N is a
variable, determination of a* according to equation (8) is best done numerically. From equation (9), the
requirement on q is that ¢ = 2. For the special form of the ISR, q = 2. Choose

which has full rank as required.
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The remainder of the calculations to define the ISR are straightforward and will be omitted here,
except for the calculation of the performance index J, defined by equations (18) and (19) for the special
form of the ISR. This was done numerically for various values of N. The results are shown graphically in
Figure 5. The graph indicates that the more measurements used in estimating the state at a given time, the
better the estimate. on a statistical basis. It also shows that for N = 4, Jis essentially proportional to I/N.

ala the variance for the average of N independent random variables with the same statistical properties [7].
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Figure 5. J versus N for the example.
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V. CONCLUSIONS AND RECOMMENDATIONS

This paper derived a general expression for the state estimation error covariance matrix for the
Ideal State Reconstructor (ISR) when the input measurements are corrupted by measurement noise. An
example was presented which showed that the more measurements used in estimating the state of the
plant at a given time, the better the estimate, on a statistical basis. Intuitively, one would expect this to be
true in general. Assuming this is the case, then the ISR is ideally suited for systems where measurements
become available more frequently than the state needs to be estimated and control law equations need to
be solved. A good implementation of it would be to have a microprocessor dedicated to multiplying the
measurements made every T/N seconds by the weighting matrices H;, j = 0,1,...,N-1, and summing
these results, recursively. After N repetitions, the result could be transferred to a central processor along
with the measurements made every T seconds. In the central processor, the remainder of the calculations
to estimate the state of the system could be made and the control law equations solved. Before the control
law equations are solved, the estimated state from the ISR could be passed through a Kalman filter to
further improve it. This is an area for future study. Determining the effects of process noise and modeling
errors on the ISR is also.

13
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